home *** CD-ROM | disk | FTP | other *** search
- /*
- * C code from the article
- * "An Implicit Surface Polygonizer"
- * by Jules Bloomenthal, jbloom@beauty.gmu.edu
- * in "Graphics Gems IV", Academic Press, 1994
- */
-
- /* implicit.c
- * an implicit surface polygonizer, translated from Mesa
- * applications should call polygonize()
- *
- * to compile a test program for ASCII output:
- * cc implicit.c -o implicit -lm
- *
- * to compile a test program for display on an SGI workstation:
- * cc -DSGIGFX implicit.c -o implicit -lgl_s -lm
- *
- * Authored by Jules Bloomenthal, Xerox PARC.
- * Copyright (c) Xerox Corporation, 1991. All rights reserved.
- * Permission is granted to reproduce, use and distribute this code for
- * any and all purposes, provided that this notice appears in all copies. */
-
- #include <math.h>
- #include <stdio.h>
- #include <sys/types.h>
-
- #define TET 0 /* use tetrahedral decomposition */
- #define NOTET 1 /* no tetrahedral decomposition */
-
- #define RES 10 /* # converge iterations */
-
- #define L 0 /* left direction: -x, -i */
- #define R 1 /* right direction: +x, +i */
- #define B 2 /* bottom direction: -y, -j */
- #define T 3 /* top direction: +y, +j */
- #define N 4 /* near direction: -z, -k */
- #define F 5 /* far direction: +z, +k */
- #define LBN 0 /* left bottom near corner */
- #define LBF 1 /* left bottom far corner */
- #define LTN 2 /* left top near corner */
- #define LTF 3 /* left top far corner */
- #define RBN 4 /* right bottom near corner */
- #define RBF 5 /* right bottom far corner */
- #define RTN 6 /* right top near corner */
- #define RTF 7 /* right top far corner */
-
- /* the LBN corner of cube (i, j, k), corresponds with location
- * (start.x+(i-.5)*size, start.y+(j-.5)*size, start.z+(k-.5)*size) */
-
- #define RAND() ((rand()&32767)/32767.) /* random number between 0 and 1 */
- #define HASHBIT (5)
- #define HASHSIZE (size_t)(1<<(3*HASHBIT)) /* hash table size (32768) */
- #define MASK ((1<<HASHBIT)-1)
- #define HASH(i,j,k) ((((((i)&MASK)<<HASHBIT)|((j)&MASK))<<HASHBIT)|((k)&MASK))
- #define BIT(i, bit) (((i)>>(bit))&1)
- #define FLIP(i,bit) ((i)^1<<(bit)) /* flip the given bit of i */
-
- typedef struct point { /* a three-dimensional point */
- double x, y, z; /* its coordinates */
- } POINT;
-
- typedef struct test { /* test the function for a signed value */
- POINT p; /* location of test */
- double value; /* function value at p */
- int ok; /* if value is of correct sign */
- } TEST;
-
- typedef struct vertex { /* surface vertex */
- POINT position, normal; /* position and surface normal */
- } VERTEX;
-
- typedef struct vertices { /* list of vertices in polygonization */
- int count, max; /* # vertices, max # allowed */
- VERTEX *ptr; /* dynamically allocated */
- } VERTICES;
-
- typedef struct corner { /* corner of a cube */
- int i, j, k; /* (i, j, k) is index within lattice */
- double x, y, z, value; /* location and function value */
- } CORNER;
-
- typedef struct cube { /* partitioning cell (cube) */
- int i, j, k; /* lattice location of cube */
- CORNER *corners[8]; /* eight corners */
- } CUBE;
-
- typedef struct cubes { /* linked list of cubes acting as stack */
- CUBE cube; /* a single cube */
- struct cubes *next; /* remaining elements */
- } CUBES;
-
- typedef struct centerlist { /* list of cube locations */
- int i, j, k; /* cube location */
- struct centerlist *next; /* remaining elements */
- } CENTERLIST;
-
- typedef struct cornerlist { /* list of corners */
- int i, j, k; /* corner id */
- double value; /* corner value */
- struct cornerlist *next; /* remaining elements */
- } CORNERLIST;
-
- typedef struct edgelist { /* list of edges */
- int i1, j1, k1, i2, j2, k2; /* edge corner ids */
- int vid; /* vertex id */
- struct edgelist *next; /* remaining elements */
- } EDGELIST;
-
- typedef struct intlist { /* list of integers */
- int i; /* an integer */
- struct intlist *next; /* remaining elements */
- } INTLIST;
-
- typedef struct intlists { /* list of list of integers */
- INTLIST *list; /* a list of integers */
- struct intlists *next; /* remaining elements */
- } INTLISTS;
-
- typedef struct process { /* parameters, function, storage */
- double (*function)(); /* implicit surface function */
- int (*triproc)(); /* triangle output function */
- double size, delta; /* cube size, normal delta */
- int bounds; /* cube range within lattice */
- POINT start; /* start point on surface */
- CUBES *cubes; /* active cubes */
- VERTICES vertices; /* surface vertices */
- CENTERLIST **centers; /* cube center hash table */
- CORNERLIST **corners; /* corner value hash table */
- EDGELIST **edges; /* edge and vertex id hash table */
- } PROCESS;
-
- void *calloc();
- char *mycalloc();
-
-
- /**** A Test Program ****/
-
-
- /* torus: a torus with major, minor radii = 0.5, 0.1, try size = .05 */
-
- double torus (x, y, z)
- double x, y, z;
- {
- double x2 = x*x, y2 = y*y, z2 = z*z;
- double a = x2+y2+z2+(0.5*0.5)-(0.1*0.1);
- return a*a-4.0*(0.5*0.5)*(y2+z2);
- }
-
-
- /* sphere: an inverse square function (always positive) */
-
- double sphere (x, y, z)
- double x, y, z;
- {
- double rsq = x*x+y*y+z*z;
- return 1.0/(rsq < 0.00001? 0.00001 : rsq);
- }
-
-
- /* blob: a three-pole blend function, try size = .1 */
-
- double blob (x, y, z)
- double x, y, z;
- {
- return 4.0-sphere(x+1.0,y,z)-sphere(x,y+1.0,z)-sphere(x,y,z+1.0);
- }
-
-
- #ifdef SGIGFX /**************************************************************/
-
- #include "gl.h"
-
- /* triangle: called by polygonize() for each triangle; set SGI lines */
-
- triangle (i1, i2, i3, vertices)
- int i1, i2, i3;
- VERTICES vertices;
- {
- float v[3];
- int i, ids[3];
- ids[0] = i1;
- ids[1] = i2;
- ids[2] = i3;
- bgnclosedline();
- for (i = 0; i < 3; i++) {
- POINT *p = &vertices.ptr[ids[i]].position;
- v[0] = p->x; v[1] = p->y; v[2] = p->z;
- v3f(v);
- }
- endclosedline();
- return 1;
- }
-
-
- /* main: call polygonize() with torus function
- * display lines on SGI */
-
- main ()
- {
- char *err, *polygonize();
-
- keepaspect(1, 1);
- winopen("implicit");
- doublebuffer();
- gconfig();
- perspective(450, 1.0/1.0, 0.1, 10.0);
- color(7);
- clear();
- swapbuffers();
- makeobj(1);
- if ((err = polygonize(torus, .05, 20, 0.,0.,0., triangle, TET)) != NULL) {
- fprintf(stderr, "%s\n", err);
- exit(1);
- }
- closeobj();
- translate(0.0, 0.0, -2.0);
- pushmatrix();
- while(1) { /* spin the object */
- reshapeviewport();
- color(7);
- clear();
- color(0);
- callobj(1);
- rot(0.8, 'x');
- rot(0.3, 'y');
- rot(0.1, 'z');
- swapbuffers();
-
- }
- }
-
- #else /***********************************************************************/
-
- int gntris; /* global needed by application */
- VERTICES gvertices; /* global needed by application */
-
-
- /* triangle: called by polygonize() for each triangle; write to stdout */
-
- triangle (i1, i2, i3, vertices)
- int i1, i2, i3;
- VERTICES vertices;
- {
- gvertices = vertices;
- gntris++;
- fprintf(stdout, "%d %d %d\n", i1, i2, i3);
- return 1;
- }
-
-
- /* main: call polygonize() with torus function
- * write points-polygon formatted data to stdout */
-
- main ()
- {
- int i;
- char *err, *polygonize();
- gntris = 0;
- fprintf(stdout, "triangles\n\n");
- if ((err = polygonize(torus, .05, 20, 0.,0.,0., triangle, TET)) != NULL) {
- fprintf(stdout, "%s\n", err);
- exit(1);
- }
- fprintf(stdout, "\n%d triangles, %d vertices\n", gntris, gvertices.count);
- fprintf(stdout, "\nvertices\n\n");
- for (i = 0; i < gvertices.count; i++) {
- VERTEX v;
- v = gvertices.ptr[i];
- fprintf(stdout, "%f %f %f\t%f %f %f\n",
- v.position.x, v.position.y, v.position.z,
- v.normal.x, v.normal.y, v.normal.z);
- }
- fprintf(stderr, "%d triangles, %d vertices\n", gntris, gvertices.count);
- exit(0);
- }
-
- #endif /**********************************************************************/
-
-
- /**** An Implicit Surface Polygonizer ****/
-
-
- /* polygonize: polygonize the implicit surface function
- * arguments are:
- * double function (x, y, z)
- * double x, y, z (an arbitrary 3D point)
- * the implicit surface function
- * return negative for inside, positive for outside
- * double size
- * width of the partitioning cube
- * int bounds
- * max. range of cubes (+/- on the three axes) from first cube
- * double x, y, z
- * coordinates of a starting point on or near the surface
- * may be defaulted to 0., 0., 0.
- * int triproc (i1, i2, i3, vertices)
- * int i1, i2, i3 (indices into the vertex array)
- * VERTICES vertices (the vertex array, indexed from 0)
- * called for each triangle
- * the triangle coordinates are (for i = i1, i2, i3):
- * vertices.ptr[i].position.x, .y, and .z
- * vertices are ccw when viewed from the out (positive) side
- * in a left-handed coordinate system
- * vertex normals point outwards
- * return 1 to continue, 0 to abort
- * int mode
- * TET: decompose cube and polygonize six tetrahedra
- * NOTET: polygonize cube directly
- * returns error or NULL
- */
-
- char *polygonize (function, size, bounds, x, y, z, triproc, mode)
- double (*function)(), size, x, y, z;
- int bounds, (*triproc)(), mode;
- {
- PROCESS p;
- int n, noabort;
- CORNER *setcorner();
- TEST in, out, find();
-
- p.function = function;
- p.triproc = triproc;
- p.size = size;
- p.bounds = bounds;
- p.delta = size/(double)(RES*RES);
-
- /* allocate hash tables and build cube polygon table: */
- p.centers = (CENTERLIST **) mycalloc(HASHSIZE,sizeof(CENTERLIST *));
- p.corners = (CORNERLIST **) mycalloc(HASHSIZE,sizeof(CORNERLIST *));
- p.edges = (EDGELIST **) mycalloc(2*HASHSIZE,sizeof(EDGELIST *));
- makecubetable();
-
- /* find point on surface, beginning search at (x, y, z): */
- srand(1);
- in = find(1, &p, x, y, z);
- out = find(0, &p, x, y, z);
- if (!in.ok || !out.ok) return "can't find starting point";
- converge(&in.p, &out.p, in.value, p.function, &p.start);
-
- /* push initial cube on stack: */
- p.cubes = (CUBES *) mycalloc(1, sizeof(CUBES)); /* list of 1 */
- p.cubes->cube.i = p.cubes->cube.j = p.cubes->cube.k = 0;
- p.cubes->next = NULL;
-
- /* set corners of initial cube: */
- for (n = 0; n < 8; n++)
- p.cubes->cube.corners[n] = setcorner(&p, BIT(n,2), BIT(n,1), BIT(n,0));
-
- p.vertices.count = p.vertices.max = 0; /* no vertices yet */
- p.vertices.ptr = NULL;
-
- setcenter(p.centers, 0, 0, 0);
-
- while (p.cubes != NULL) { /* process active cubes till none left */
- CUBE c;
- CUBES *temp = p.cubes;
- c = p.cubes->cube;
-
- noabort = mode == TET?
- /* either decompose into tetrahedra and polygonize: */
- dotet(&c, LBN, LTN, RBN, LBF, &p) &&
- dotet(&c, RTN, LTN, LBF, RBN, &p) &&
- dotet(&c, RTN, LTN, LTF, LBF, &p) &&
- dotet(&c, RTN, RBN, LBF, RBF, &p) &&
- dotet(&c, RTN, LBF, LTF, RBF, &p) &&
- dotet(&c, RTN, LTF, RTF, RBF, &p)
- :
- /* or polygonize the cube directly: */
- docube(&c, &p);
- if (! noabort) return "aborted";
-
- /* pop current cube from stack */
- p.cubes = p.cubes->next;
- free((char *) temp);
- /* test six face directions, maybe add to stack: */
- testface(c.i-1, c.j, c.k, &c, L, LBN, LBF, LTN, LTF, &p);
- testface(c.i+1, c.j, c.k, &c, R, RBN, RBF, RTN, RTF, &p);
- testface(c.i, c.j-1, c.k, &c, B, LBN, LBF, RBN, RBF, &p);
- testface(c.i, c.j+1, c.k, &c, T, LTN, LTF, RTN, RTF, &p);
- testface(c.i, c.j, c.k-1, &c, N, LBN, LTN, RBN, RTN, &p);
- testface(c.i, c.j, c.k+1, &c, F, LBF, LTF, RBF, RTF, &p);
- }
- return NULL;
- }
-
-
- /* testface: given cube at lattice (i, j, k), and four corners of face,
- * if surface crosses face, compute other four corners of adjacent cube
- * and add new cube to cube stack */
-
- testface (i, j, k, old, face, c1, c2, c3, c4, p)
- CUBE *old;
- PROCESS *p;
- int i, j, k, face, c1, c2, c3, c4;
- {
- CUBE new;
- CUBES *oldcubes = p->cubes;
- CORNER *setcorner();
- static int facebit[6] = {2, 2, 1, 1, 0, 0};
- int n, pos = old->corners[c1]->value > 0.0 ? 1 : 0, bit = facebit[face];
-
- /* test if no surface crossing, cube out of bounds, or already visited: */
- if ((old->corners[c2]->value > 0) == pos &&
- (old->corners[c3]->value > 0) == pos &&
- (old->corners[c4]->value > 0) == pos) return;
- if (abs(i) > p->bounds || abs(j) > p->bounds || abs(k) > p->bounds) return;
- if (setcenter(p->centers, i, j, k)) return;
-
- /* create new cube: */
- new.i = i;
- new.j = j;
- new.k = k;
- for (n = 0; n < 8; n++) new.corners[n] = NULL;
- new.corners[FLIP(c1, bit)] = old->corners[c1];
- new.corners[FLIP(c2, bit)] = old->corners[c2];
- new.corners[FLIP(c3, bit)] = old->corners[c3];
- new.corners[FLIP(c4, bit)] = old->corners[c4];
- for (n = 0; n < 8; n++)
- if (new.corners[n] == NULL)
- new.corners[n] = setcorner(p, i+BIT(n,2), j+BIT(n,1), k+BIT(n,0));
-
- /*add cube to top of stack: */
- p->cubes = (CUBES *) mycalloc(1, sizeof(CUBES));
- p->cubes->cube = new;
- p->cubes->next = oldcubes;
- }
-
-
- /* setcorner: return corner with the given lattice location
- set (and cache) its function value */
-
- CORNER *setcorner (p, i, j, k)
- int i, j, k;
- PROCESS *p;
- {
- /* for speed, do corner value caching here */
- CORNER *c = (CORNER *) mycalloc(1, sizeof(CORNER));
- int index = HASH(i, j, k);
- CORNERLIST *l = p->corners[index];
- c->i = i; c->x = p->start.x+((double)i-.5)*p->size;
- c->j = j; c->y = p->start.y+((double)j-.5)*p->size;
- c->k = k; c->z = p->start.z+((double)k-.5)*p->size;
- for (; l != NULL; l = l->next)
- if (l->i == i && l->j == j && l->k == k) {
- c->value = l->value;
- return c;
- }
- l = (CORNERLIST *) mycalloc(1, sizeof(CORNERLIST));
- l->i = i; l->j = j; l->k = k;
- l->value = c->value = p->function(c->x, c->y, c->z);
- l->next = p->corners[index];
- p->corners[index] = l;
- return c;
- }
-
-
- /* find: search for point with value of given sign (0: neg, 1: pos) */
-
- TEST find (sign, p, x, y, z)
- int sign;
- PROCESS *p;
- double x, y, z;
- {
- int i;
- TEST test;
- double range = p->size;
- test.ok = 1;
- for (i = 0; i < 10000; i++) {
- test.p.x = x+range*(RAND()-0.5);
- test.p.y = y+range*(RAND()-0.5);
- test.p.z = z+range*(RAND()-0.5);
- test.value = p->function(test.p.x, test.p.y, test.p.z);
- if (sign == (test.value > 0.0)) return test;
- range = range*1.0005; /* slowly expand search outwards */
- }
- test.ok = 0;
- return test;
- }
-
-
- /**** Tetrahedral Polygonization ****/
-
-
- /* dotet: triangulate the tetrahedron
- * b, c, d should appear clockwise when viewed from a
- * return 0 if client aborts, 1 otherwise */
-
- int dotet (cube, c1, c2, c3, c4, p)
- CUBE *cube;
- int c1, c2, c3, c4;
- PROCESS *p;
- {
- CORNER *a = cube->corners[c1];
- CORNER *b = cube->corners[c2];
- CORNER *c = cube->corners[c3];
- CORNER *d = cube->corners[c4];
- int index = 0, apos, bpos, cpos, dpos, e1, e2, e3, e4, e5, e6;
- if (apos = (a->value > 0.0)) index += 8;
- if (bpos = (b->value > 0.0)) index += 4;
- if (cpos = (c->value > 0.0)) index += 2;
- if (dpos = (d->value > 0.0)) index += 1;
- /* index is now 4-bit number representing one of the 16 possible cases */
- if (apos != bpos) e1 = vertid(a, b, p);
- if (apos != cpos) e2 = vertid(a, c, p);
- if (apos != dpos) e3 = vertid(a, d, p);
- if (bpos != cpos) e4 = vertid(b, c, p);
- if (bpos != dpos) e5 = vertid(b, d, p);
- if (cpos != dpos) e6 = vertid(c, d, p);
- /* 14 productive tetrahedral cases (0000 and 1111 do not yield polygons */
- switch (index) {
- case 1: return p->triproc(e5, e6, e3, p->vertices);
- case 2: return p->triproc(e2, e6, e4, p->vertices);
- case 3: return p->triproc(e3, e5, e4, p->vertices) &&
- p->triproc(e3, e4, e2, p->vertices);
- case 4: return p->triproc(e1, e4, e5, p->vertices);
- case 5: return p->triproc(e3, e1, e4, p->vertices) &&
- p->triproc(e3, e4, e6, p->vertices);
- case 6: return p->triproc(e1, e2, e6, p->vertices) &&
- p->triproc(e1, e6, e5, p->vertices);
- case 7: return p->triproc(e1, e2, e3, p->vertices);
- case 8: return p->triproc(e1, e3, e2, p->vertices);
- case 9: return p->triproc(e1, e5, e6, p->vertices) &&
- p->triproc(e1, e6, e2, p->vertices);
- case 10: return p->triproc(e1, e3, e6, p->vertices) &&
- p->triproc(e1, e6, e4, p->vertices);
- case 11: return p->triproc(e1, e5, e4, p->vertices);
- case 12: return p->triproc(e3, e2, e4, p->vertices) &&
- p->triproc(e3, e4, e5, p->vertices);
- case 13: return p->triproc(e6, e2, e4, p->vertices);
- case 14: return p->triproc(e5, e3, e6, p->vertices);
- }
- return 1;
- }
-
-
- /**** Cubical Polygonization (optional) ****/
-
-
- #define LB 0 /* left bottom edge */
- #define LT 1 /* left top edge */
- #define LN 2 /* left near edge */
- #define LF 3 /* left far edge */
- #define RB 4 /* right bottom edge */
- #define RT 5 /* right top edge */
- #define RN 6 /* right near edge */
- #define RF 7 /* right far edge */
- #define BN 8 /* bottom near edge */
- #define BF 9 /* bottom far edge */
- #define TN 10 /* top near edge */
- #define TF 11 /* top far edge */
-
- static INTLISTS *cubetable[256];
-
- /* edge: LB, LT, LN, LF, RB, RT, RN, RF, BN, BF, TN, TF */
- static int corner1[12] = {LBN,LTN,LBN,LBF,RBN,RTN,RBN,RBF,LBN,LBF,LTN,LTF};
- static int corner2[12] = {LBF,LTF,LTN,LTF,RBF,RTF,RTN,RTF,RBN,RBF,RTN,RTF};
- static int leftface[12] = {B, L, L, F, R, T, N, R, N, B, T, F};
- /* face on left when going corner1 to corner2 */
- static int rightface[12] = {L, T, N, L, B, R, R, F, B, F, N, T};
- /* face on right when going corner1 to corner2 */
-
-
- /* docube: triangulate the cube directly, without decomposition */
-
- int docube (cube, p)
- CUBE *cube;
- PROCESS *p;
- {
- INTLISTS *polys;
- int i, index = 0;
- for (i = 0; i < 8; i++) if (cube->corners[i]->value > 0.0) index += (1<<i);
- for (polys = cubetable[index]; polys; polys = polys->next) {
- INTLIST *edges;
- int a = -1, b = -1, count = 0;
- for (edges = polys->list; edges; edges = edges->next) {
- CORNER *c1 = cube->corners[corner1[edges->i]];
- CORNER *c2 = cube->corners[corner2[edges->i]];
- int c = vertid(c1, c2, p);
- if (++count > 2 && ! p->triproc(a, b, c, p->vertices)) return 0;
- if (count < 3) a = b;
- b = c;
- }
- }
- return 1;
- }
-
-
- /* nextcwedge: return next clockwise edge from given edge around given face */
-
- int nextcwedge (edge, face)
- int edge, face;
- {
- switch (edge) {
- case LB: return (face == L)? LF : BN;
- case LT: return (face == L)? LN : TF;
- case LN: return (face == L)? LB : TN;
- case LF: return (face == L)? LT : BF;
- case RB: return (face == R)? RN : BF;
- case RT: return (face == R)? RF : TN;
- case RN: return (face == R)? RT : BN;
- case RF: return (face == R)? RB : TF;
- case BN: return (face == B)? RB : LN;
- case BF: return (face == B)? LB : RF;
- case TN: return (face == T)? LT : RN;
- case TF: return (face == T)? RT : LF;
- }
- }
-
-
- /* otherface: return face adjoining edge that is not the given face */
-
- int otherface (edge, face)
- int edge, face;
- {
- int other = leftface[edge];
- return face == other? rightface[edge] : other;
- }
-
-
- /* makecubetable: create the 256 entry table for cubical polygonization */
-
- makecubetable ()
- {
- int i, e, c, done[12], pos[8];
- for (i = 0; i < 256; i++) {
- for (e = 0; e < 12; e++) done[e] = 0;
- for (c = 0; c < 8; c++) pos[c] = BIT(i, c);
- for (e = 0; e < 12; e++)
- if (!done[e] && (pos[corner1[e]] != pos[corner2[e]])) {
- INTLIST *ints = 0;
- INTLISTS *lists = (INTLISTS *) mycalloc(1, sizeof(INTLISTS));
- int start = e, edge = e;
- /* get face that is to right of edge from pos to neg corner: */
- int face = pos[corner1[e]]? rightface[e] : leftface[e];
- while (1) {
- edge = nextcwedge(edge, face);
- done[edge] = 1;
- if (pos[corner1[edge]] != pos[corner2[edge]]) {
- INTLIST *tmp = ints;
- ints = (INTLIST *) mycalloc(1, sizeof(INTLIST));
- ints->i = edge;
- ints->next = tmp; /* add edge to head of list */
- if (edge == start) break;
- face = otherface(edge, face);
- }
- }
- lists->list = ints; /* add ints to head of table entry */
- lists->next = cubetable[i];
- cubetable[i] = lists;
- }
- }
- }
-
-
- /**** Storage ****/
-
-
- /* mycalloc: return successful calloc or exit program */
-
- char *mycalloc (nitems, nbytes)
- int nitems, nbytes;
- {
- char *ptr = calloc(nitems, nbytes);
- if (ptr != NULL) return ptr;
- fprintf(stderr, "can't calloc %d bytes\n", nitems*nbytes);
- exit(1);
- }
-
-
- /* setcenter: set (i,j,k) entry of table[]
- * return 1 if already set; otherwise, set and return 0 */
-
- int setcenter(table, i, j, k)
- CENTERLIST *table[];
- int i, j, k;
- {
- int index = HASH(i, j, k);
- CENTERLIST *new, *l, *q = table[index];
- for (l = q; l != NULL; l = l->next)
- if (l->i == i && l->j == j && l->k == k) return 1;
- new = (CENTERLIST *) mycalloc(1, sizeof(CENTERLIST));
- new->i = i; new->j = j; new->k = k; new->next = q;
- table[index] = new;
- return 0;
- }
-
-
- /* setedge: set vertex id for edge */
-
- setedge (table, i1, j1, k1, i2, j2, k2, vid)
- EDGELIST *table[];
- int i1, j1, k1, i2, j2, k2, vid;
- {
- unsigned int index;
- EDGELIST *new;
- if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
- int t=i1; i1=i2; i2=t; t=j1; j1=j2; j2=t; t=k1; k1=k2; k2=t;
- }
- index = HASH(i1, j1, k1) + HASH(i2, j2, k2);
- new = (EDGELIST *) mycalloc(1, sizeof(EDGELIST));
- new->i1 = i1; new->j1 = j1; new->k1 = k1;
- new->i2 = i2; new->j2 = j2; new->k2 = k2;
- new->vid = vid;
- new->next = table[index];
- table[index] = new;
- }
-
-
- /* getedge: return vertex id for edge; return -1 if not set */
-
- int getedge (table, i1, j1, k1, i2, j2, k2)
- EDGELIST *table[];
- int i1, j1, k1, i2, j2, k2;
- {
- EDGELIST *q;
- if (i1>i2 || (i1==i2 && (j1>j2 || (j1==j2 && k1>k2)))) {
- int t=i1; i1=i2; i2=t; t=j1; j1=j2; j2=t; t=k1; k1=k2; k2=t;
- };
- q = table[HASH(i1, j1, k1)+HASH(i2, j2, k2)];
- for (; q != NULL; q = q->next)
- if (q->i1 == i1 && q->j1 == j1 && q->k1 == k1 &&
- q->i2 == i2 && q->j2 == j2 && q->k2 == k2)
- return q->vid;
- return -1;
- }
-
-
- /**** Vertices ****/
-
-
- /* vertid: return index for vertex on edge:
- * c1->value and c2->value are presumed of different sign
- * return saved index if any; else compute vertex and save */
-
- int vertid (c1, c2, p)
- CORNER *c1, *c2;
- PROCESS *p;
- {
- VERTEX v;
- POINT a, b;
- int vid = getedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k);
- if (vid != -1) return vid; /* previously computed */
- a.x = c1->x; a.y = c1->y; a.z = c1->z;
- b.x = c2->x; b.y = c2->y; b.z = c2->z;
- converge(&a, &b, c1->value, p->function, &v.position); /* position */
- vnormal(&v.position, p, &v.normal); /* normal */
- addtovertices(&p->vertices, v); /* save vertex */
- vid = p->vertices.count-1;
- setedge(p->edges, c1->i, c1->j, c1->k, c2->i, c2->j, c2->k, vid);
- return vid;
- }
-
-
- /* addtovertices: add v to sequence of vertices */
-
- addtovertices (vertices, v)
- VERTICES *vertices;
- VERTEX v;
- {
- if (vertices->count == vertices->max) {
- int i;
- VERTEX *new;
- vertices->max = vertices->count == 0 ? 10 : 2*vertices->count;
- new = (VERTEX *) mycalloc((unsigned) vertices->max, sizeof(VERTEX));
- for (i = 0; i < vertices->count; i++) new[i] = vertices->ptr[i];
- if (vertices->ptr != NULL) free((char *) vertices->ptr);
- vertices->ptr = new;
- }
- vertices->ptr[vertices->count++] = v;
- }
-
-
- /* vnormal: compute unit length surface normal at point */
-
- vnormal (point, p, v)
- POINT *point, *v;
- PROCESS *p;
- {
- double f = p->function(point->x, point->y, point->z);
- v->x = p->function(point->x+p->delta, point->y, point->z)-f;
- v->y = p->function(point->x, point->y+p->delta, point->z)-f;
- v->z = p->function(point->x, point->y, point->z+p->delta)-f;
- f = sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
- if (f != 0.0) {v->x /= f; v->y /= f; v->z /= f;}
- }
-
-
- /* converge: from two points of differing sign, converge to zero crossing */
-
- converge (p1, p2, v, function, p)
- double v;
- double (*function)();
- POINT *p1, *p2, *p;
- {
- int i = 0;
- POINT pos, neg;
- if (v < 0) {
- pos.x = p2->x; pos.y = p2->y; pos.z = p2->z;
- neg.x = p1->x; neg.y = p1->y; neg.z = p1->z;
- }
- else {
- pos.x = p1->x; pos.y = p1->y; pos.z = p1->z;
- neg.x = p2->x; neg.y = p2->y; neg.z = p2->z;
- }
- while (1) {
- p->x = 0.5*(pos.x + neg.x);
- p->y = 0.5*(pos.y + neg.y);
- p->z = 0.5*(pos.z + neg.z);
- if (i++ == RES) return;
- if ((function(p->x, p->y, p->z)) > 0.0)
- {pos.x = p->x; pos.y = p->y; pos.z = p->z;}
- else {neg.x = p->x; neg.y = p->y; neg.z = p->z;}
- }
- }
-